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Short-time dynamics of a metamagnetic model

M. Santos and W. Figueiredo*
Departamento de Fı´sica, Universidade Federal de Santa Catarina, CEP 88040-900, Floriano´polis, SC, Brazil

~Received 23 December 1999!

We studied a layered metamagnetic Ising model with competing ferromagnetic and antiferromagnetic inter-
actions on a square lattice. The model is formed of ferromagnetic chains coupled by an antiferromagnetic
interaction. Using Monte Carlo simulations we have determined the phase diagram of the model, which
exhibits a tricritical point. By exploring the short-time scaling dynamics, we have found the dynamic and static
critical exponents along the continuous transition line between the antiferromagnetic and paramagnetic phases.

PACS number~s!: 64.60.Ht
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I. INTRODUCTION

The study of the critical properties of physical syste
continues to be a topic of current interest in equilibrium s
tistical physics@1#. Among the various methods of analys
that are employed to determine phase diagrams and cri
exponents, the most important are high- and low-tempera
series expansion@2#, real space renormalization group@3#, e
expansion@4#, and numerical simulations, such as the Mon
Carlo method@5#. However, when we wish to study the no
equilibrium behavior of physical systems, we have only
few techniques at our disposal. In all cases, we need to
sider the gain and loss master equation, which is an equa
for the time evolution of the state probabilities@6#. In this
formalism it is necessary to establish the transition ra
among the states, and this defines a dynamical model.
exact solution for the state probability of an interacting p
ticle system is not possible. The linear Ising model is
exception to this general rule, because we know the e
values of the one-point and two-point correlation functio
@7#. In order to decouple the hierarchy of equations of mot
we can use approximate methods, such as, for instance
site approximation or the dynamical pair approximati
@8,9#. Another way to find the critical properties of nonequ
librium systems is to include momentum-space renormal
tion group arguments into the master equation formalis
Janssen, Schaub, and Schmittmann@10# showed, through the
e expansion, that the usual universal behavior observe
large time scales, very near equilibrium, can also be infer
at the early initial stages of the evolution of the syste
which is in a state far from equilibrium. In recent yea
some numerical simulations have been applied to spin
tems to test the idea of universality in the short-time regi
@11,12#.

In this work we consider a layered metamagnetic Is
model on a square lattice, with competing ferromagnetic
antiferromagnetic couplings. Using Monte Carlo simulatio
for the equilibrium states of the model, we were able to fi
the phase transition between the ordered antiferromagn
and disordered paramagnetic states. We showed that
phase diagram of the model displays discontinuous and
tinuous transition lines, which are separated by a tricriti
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point. Next, we directed our simulations to exploring t
short-time dynamics of the model. From an initial state, ch
sen to be the ground state of the model, we left the system
evolve in time at its critical point, which is given by th
values of temperature and magnetic field on the continu
phase boundary. We calculated the static and dynamic c
cal exponents of the model from the short-time scaling re
tions. In the next section, we present the model and the s
ing relations used in our short-time calculations. In Sec.
we give our Monte Carlo simulations, the phase diagra
and the values of the critical exponents. Finally, in Sec.
we present our conclusions.

II. MODEL

We have considered an Ising spin system on a squ
lattice, formed by two alternating sublattices 1 and 2. T
exchange interaction between first neighboring spins on
same sublattice is of the ferromagnetic type, while the c
pling between neighboring spins belonging to different su
lattices is of the antiferromagnetic type. The Hamiltonian
the model in the presence of an applied field is

H52(
i , j

s i , j~J1s i 11,j2J2s i , j 111H !, ~1!

where s i , j561 are the spin variables,H is the external
magnetic field, andJ1 andJ2 are the ferromagnetic and an
tiferromagnetic exchange interactions, respectively. T
phase diagram and the critical properties of this model w
presented by Kincaid and Cohen@13# in an interesting re-
view concerning its mean-field properties. They showed t
the phase diagram of the metamagnetic model, in the p
of temperature versus magnetic field, displays a variety
critical points, depending on the ratio between the ferrom
netic and antiferromagnetic exchange couplings. If the va
of this ratio is higher than a critical value, the phase diagr
exhibits a tricritical point connecting a continuous transiti
line to a discontinuous one. Both lines describe transitio
between an ordered antiferromagnetic phase and a disord
paramagnetic phase. On the other hand, if this ratio
smaller than the same critical value, the tricritical point sp
into a critical and a double critical end points. However, th
latter result is not supported by experiments@14# and numeri-
cal simulations@15#. Only the tricritical point appears in the
phase diagram. In recent work@16# we found the phase dia
gram of this model. We employed the master equation
1799 ©2000 The American Physical Society
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proach and used the dynamical pair approximation to br
the chain of the equation of motion for the pair probabilitie
Although the pair approximation includes only neare
neighbor correlations, it gives only a tricritical point for an
value of the ratio between the ferromagnetic and antife
magnetic couplings, in accordance with the experimental
simulation results.

Now we present the equations that govern the relaxa
of the spin system from an initial state that is complet
ordered. In this spin model the order parameter is the s
gered magnetization. We choose a point on the continu
transition line of the phase diagram where the critical val
of temperature and magnetic field areTc and Hc , respec-
tively. For a fixed value of the field (Hc), considering a
value of temperature very near this critical point, and tak
the valueM051 for the order parameter at timet50, we
can write the following scaling form@17# for thekth moment
of the order parameter:

M (k)~ t,t,L !5b2kb/nM (k)~b2zt,b1/nt,b21L !, ~2!

where t5(T2Tc)/Tc is the reduced temperature,b is the
spatial rescaling factor, andL is the lattice size. The expo
nentsb and n are the well known equilibrium exponent
andz is the dynamical critical exponent. This scaling relati
for the order parameter is similar to the one used in lo
time regime studies. Here, it is used to investigate the m
roscopic short-time regime, as in the work of Jasteret al.
@17# For k51, we have the proper staggered magnetizat
and, choosing the scaling factor to beb5t1/z, we obtain

M ~ t,t!5t2b/nzM ~1,t1/nzt!, ~3!

where it is assumed that the linear dimensionL is very large.
At the critical pointt50, the staggered magnetization di
plays the following power-law behavior:

M ~ t !;t2c1, ~4!

FIG. 1. Distribution probability for the values of the stagger
magnetization, at the discontinous phase transition.T50.6, H
52.04, andL516. T is in units ofJ/kB andH in units of J.
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wherec15b/nz. Taking the derivative of Eq.~2! with re-
spect tot and choosing the same scaling factor as before,
can write the following relation at the critical point:

DM ~ t !;tc2, ~5!

wherec251/nz, andDM (t) is the logarithmic derivative of
M (t,t) with respect tot, at the critical point wheret50. As
the staggered magnetization is different from zero in the
tial stages of the evolution, we can also define a time dep
dent second-order cumulant. It is given by

U~ t !5
M (2)

~M !2
21;tc3, ~6!

wherec35d/z, andd is the spatial dimensionality of the spi
system. Therefore, by measuring the three independent
ponentsc1 , c2, andc3, we can obtain the static (b,n) and
the dynamical~z! critical exponents. This procedure is eas
to implement than the usual one, where we need to prep
the system to have, at the initial time, a very small value
the magnetization and of the correlation length.

III. SIMULATIONS

Before we consider the application of short-time dyna
ics, as briefly explained in the last section, we first need
determine the critical parameters of the model. In order
attain this goal, we performed Monte Carlo simulations
this model. We considered a two-dimensional lattice, w
linear length ranging fromL516 toL5128. We have taken
for the transition probability rate among states, the followi
one-spin-flip Glauber prescription@7#:

FIG. 2. Residence time as a function of the magnetic fieldH, for
the temperatureT50.6 andL516. The continuous line gives th
residence time for the antiferromagnetic states, while the dotted
is the residence time for the paramagnetic states. The residence
t r is dimensionless.
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FIG. 3. Staggered magnetization versus magnetic field for three selected values of temperature near the tricritical point. Open
for increasing values of the field and closed circles are for decreasing values of the field. The lattice size isL5128. ~a! T50.870,~b! T
50.875, and~c! T50.880.
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2 F12s i , j tanhS 1

kBT
@J1~s i 21,j1s i 11,j !

2J2~s i , j 211s i , j 11!1H# D G , ~7!

where kB is the Boltzmann constant andT is the absolute
temperature of the heat bath. In the actual simulation,
chooseJ15J25J. For a fixed pair of values ofT andH, we
have considered 105 Monte Carlo steps~MCS! to calculate
the mean values of the sublattice magnetizationsm1 andm2,
from which we obtain the magnetizationm5(m11m2)/2
and the staggered magnetizationM5(m12m2)/2, which is
the order parameter. We have also determined the fou
order cumulant of the staggered magnetization, in orde
better locate the critical point. Thermalization was achiev
e

h-
to
,

after we discarded the initial 104 MCS. For the continuous
transition the critical point was determined, as usual, by
point where all the fourth-order cumulants cross themselv
In general, we applied this procedure by fixing the value oT
and changing the value ofH for every lattice sizeL. We also
checked the results by fixingH and changingT. In the case
of the discontinuous transition, we determined the stagge
magnetization curve as a function of the field, for a fix
value of temperature. This procedure is not an efficient o
because it is difficult to distinguish a continuous from a d
continuous curve, especially near the tricritical point, bu
gives an idea of the range of values of the field where
transition is of first order. With the purpose of improving th
determination of the transition field, we have also co
structed a histogram of the probability distribution of th
staggered magnetization. For example, we show in Fig.
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1802 PRE 62M. SANTOS AND W. FIGUEIREDO
typical histogram forT50.6, H52.04, andL516. As we
can see, the height of the peak atM50 is approximately
equal to the sum of heights of the two nearest peaks. T
means that the system exhibits two different states with
most the same probability. In this case we used 203106

MCS to obtain the histogram, in order to give an opportun
to the system to visit its most probable states many tim
For better location of the transition field, we also found t
residence time for the antiferromagnetic and paramagn
states, as exhibited in Fig. 2. During the observation time,
computed the time spent around the most probable states
function of the field for a fixed value of temperature. W
expect that the crossing point of the two curves in Fig
gives the desired transition field. However, near the tricriti
point, the determination of the transition field using this p
cedure is also difficult. This happens because critical slow
down is also present even on the magnetization curve for
first-order transition. In this work the location of the tricrit
cal point was achieved through the disappearance of hy
esis @18#. For a fixed value of temperature, we drew t
staggered magnetization curves for increasing and decrea
values of the magnetic field. In Figs. 3, we show these cur
for a system of sizeL5128, and for three values of temper
ture near the tricritical point. Our estimate for the tricritic
temperature isTt50.87860.002. Finally, in Fig. 4, we ex-
hibit the complete phase diagram of the model showing
continuous and discontinuous transition lines separating
antiferromagnetic and paramagnetic phases. The tricrit
point, which is indicated by an open circle, joins these t
lines.

Now we present the results we obtained for the criti
exponents along the continuous transition line through
formalism of short-time scaling critical dynamics. We ha

FIG. 4. Phase diagram in the plane magnetic fieldH versus
temperatureT. Continuous phase transitions are represented by
open diamonds, while the discontinuous transitions are given by
closed circles. The open circle indicates the tricritical point. AF a
P are the antiferromagnetic and paramagnetic phases, respect
T is in units ofJ/kB andH in units ofJ. The lines serve to guide th
eyes.
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prepared the system to be in a completely ordered state,
it was left to evolve in time at the chosen critical values
temperature and field. We have considered up to 500 MC
evaluate the exponents, and our results represent aver
over 2000 samples of linear lengthL5256. For instance, we
exhibit in Fig. 5, forTc51.647 andHc51.50, the log-log
plot of staggered magnetization versus time. We also sh
the best fit to our data points. From the slope of this curve
found thatc150.059 66(0). In Fig. 6, we exhibit the log-log
plot of the logarithmic derivative of the staggered magne
zation with respect to the reduced temperature at the crit
point, versus time. From the slope of the curve, which fits

e
e

d
ely.

FIG. 5. Plot of ln@M(t)# versus ln(t) at Tc51.647 andHc

51.50. The straight line gives the best fit to the data points.

FIG. 6. Plot of ln@DM(t)# versus ln(t) at Tc51.647 andHc

51.50. The straight line gives the best fit to the data points.
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data points, we foundc250.498(4). Finally, in Fig. 7, we
show the log-log plot of the second-order cumulant ver
time, and the best fit to the data points. The slope of
curve in this figure givesc350.955(18). With these values
we can find the critical exponentsb, n, andz. For this par-
ticular critical point of the transition line, we have found th
following values: b50.120(6), n50.96(3), and z
52.09(4). Forother critical points on the continuous trans
tion line we also found values for these exponents by e
ploying the same procedure as above. For instance, we
see in Fig. 8 the values of the exponentsn and z plotted
against the ratio between the critical values of the field a

FIG. 7. Plot of ln@U(t)# versus ln(t) at Tc51.647 andHc

51.50. The straight line gives the best fit to the data points.

FIG. 8. Critical exponentsz ~closed circles! andn ~open circles!
plotted against the ratio between the critical values of the field
temperature (Hc /Tc) along the continuous phase boundary.
s
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temperature. We see that these exponents are well beh
for all values of the ratioHc /Tc , up to the vicinity of the
tricritical point, where this ratio assumes the valueHt /Tt
52.20. However, as we can observe in Fig. 9, the values
the exponentb are influenced by the presence of the tricri
cal point. For values of the ratioHc /Tc less than 1.0, theb
exponent is the same as in the two-dimensional Ising mo
as predicted by universality arguments. However, for val
of the ratio Hc /Tc larger than 1, we clearly observe th
crossover between critical and tricritical behavior.

IV. CONCLUSIONS

We have studied a two-sublattice layered metamagn
model on a square lattice, with competing ferromagnetic a
antiferromagnetic couplings. Using the Monte Carlo meth
we have determined the phase diagram of the model, wh
exhibits continuous and discontinuous phase transitions
tween the antiferromagnetic and paramagnetic pha
Through the short-time scaling critical dynamics, we ha
found the static and dynamic critical exponents along
continuous transition line of the model. The values of t
exponentsn andz are almost independent of temperature a
magnetic field along the critical line up to near the tricritic
point. On the other hand, the value of the exponentb is
affected by the presence of the tricritical point, showing
crossover between critical and tricritical behavior. To t
best of our knowledge this is the first time that short-tim
dynamics has been applied to a model system in the pres
of an external magnetic field.
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